

BADGE - Data Sheet

General Description

BADGE – BitSim's Accelerated Display Graphics Engine IP block for ASIC & FPGA, is an advanced graphic controller.

BADGE is an adaptable IP-block for ASIC and FPGA.

BADGE is easy to use and to implement. The only external components needed are a memory and a display. The processor may be a separate component or may be embedded with BADGE in the FPGA or ASIC. For analog video, an ADC is needed.

BADGE supports several memory types and this support can be extended to other memories.

BADGE supports several CPU bus types and this support can be extended to other CPU bus types.

BADGE Architecture

BADGE block diagram

The VPU (Video Processing Unit) transfers the information in a digital video stream into BADGE. The GPUs (Graphics Processing Units) are tailored to accelerate a specific graphic task and they work simultaneously or can be chosen independently.

BADGE Datasheet

Example of such tasks:

- Draw pixels, lines and rectangles
- · Write text of various fonts, sizes and colors
- · Copy, resize and recolor rectangles
- Draw/Move graphical objects e.g. "sprites"
- Analog and Digital Video

As **BADGE** is modular it is convenient to include only the required GPUs or VPUs performing just the graphics operations needed in a system. This makes the design trimmed, excluding unused logic on a minimal area of silicon using a minimum of power.

If BADGE is implemented in an FPGA, it is even possible to dynamically reconfigure BADGE during operation.

Features

- Fully synchronous, synthesizable and technology independent RTL code
- · Capable of drawing shapes such as pixels, lines and rectangles
- · Capable of drawing text of various fonts, sizes and colors
- Capable of copying, resizing and recolor rectangles e.g. "BitBlt" and ROP
- Capable of drawing/moving graphical objects e.g. "sprites"
- Supports multi-buffered frame memory which eliminates flicker when graphical objects move
- Supports Analog Video with external A/D circuit
- Support of alpha blending (2 variants)
- Supports Digital Video SDI
- Anti-aliasing
- Text/Graphics overlay
- Hardware Window Picture-In-Picture support
- Hardware-cursor support, by making use of sprites
- Programmable frame rate
- Up to 4096 x 4096 pixels display resolution
- Generic color depth up to 24 bits per pixel
- Supports several memory types such as SDRAM, DDR, ZBT-SRAM etc.
- Supports address mapped linear frame buffer or single address command based interface
- Generic data bus width between BADGE and video memory
- Supports several bus types such as General programmable, Avalon (Nios),
 CoreConnect/OPB (PowerPC, MicroBlaze) and Intel Xscale CPU-bus, RS232
- CPU-data bus of 32, 16 and 8-bit supported
- BADGE has been used with displays such as:
 - Sharp display LQ065T9DR51, 400x240 (WQVGA)
 - Sharp display LQ057Q3DC12, 320x240 (QVGA)
 - Sharp display LQ057Q3DC12, 800x600 (SVGA)
 - Samsung displays LTM150XH-T01, LTM150XH-L04, 1024x768 (XGA)
 - AU Optronics A070VW01 800x480 (WVGA)
 - AU Optronics A070VW01 1680x1050 (WSXGA+)
- Supports serial LVDS and parallel LVTTL TFT-interface
- Supports DVI
- Supports Display Power Sequencing
- Supports DE Only Mode, for displays which do not use hsync and vsync inputs
- Support of Portrait mode
- A Test Pattern Generator is included, for debug purpose
- · WinCE driver
- Linux driver (accelerated Frame Buffer for Linux)
- API, for non OS users

LITE option

BADGE can be delivered in a LITE version, in which BADGE only acts as a display-controlling device with no support for graphic acceleration (drawing lines, rectangles, text support etc). However, support for video memory access on a pixel-by-pixel basis and Hardware cursors is included. Additional features from the list above can be added upon request.

Future Enhancements

Since BADGE is implemented in 'hard SW', the following implementation specifics can be changed easily:

- · Common memory for BADGE and Host
- · The display resolution can easily be enlarged
- The color depth can be easily enlarged
- New Host Interfaces: new CPUs, PCI etc

Applications

- Test and Measurement Instrumentation
- · Medical Instrumentation
- Industrial Equipment
- · Gaming and Amusement Machines

BADGE: Implemented on BitSim's High Speed FPGA Platform board, HIPPO

Interfaces

General

Signal Name	I/O	Width	Description
Reset_n		1	Global reset
Clk_mem	I	1	Memory controller clock
Clk_core	I	1	Core clock

General Interface

Host Bus Interface

The host bus interfaces below are some typical examples. Other interfaces are also supported.

Avalon Bus Interface

Signal Name	I/O	Width	Description
Chipselect	ı	1	Chip select signal to the slave
Read	ı	1	Read request signal to the slave
Readdata	0	32	Data lines to the slave for read transfers
Write	1	1	Write request signal to the slave
Writedata	1	32	Data lines from the slave for write transfers
Waitrequest	0	1	Stalls the slave if no immediate respons
Irq	0	1	Slave interrupt request

Avalon Bus Interface

CoreConnect/OPB Bus Interface

Signal Name	I/O	Width	Description
OPB_DBus	ı	32	Data to badge
OPB_RNW	ı	1	Read/Not write
OPB_Rst	ı	1	OPB Reset, not used
CS	ı	1	Chip select from address decoding
Sln_DBus	0	32	Data from Badge
Sln_toutSup	0	1	Timeout suppress
Sln_xferAck	0	1	Slave Transfer acknowledge
Irq	0	1	Interrupt

CoreConnect/OPB Bus Interface

Memory Interfaces

The memory interface support can be easily changed to support other memory types besides those described below. G.W. below denotes generic width, that is a generic in VHDL.

ZBT Memory Interface

Supports both pipelined ZBT and flow-through ZBT.

Signal Name	9	Width	Description
maddr	0	G.W.	Address
mdata	I/O	G.W.	Data

BADGE Datasheet

mbw	0	G.W.	Byte write enables
mrw	0	1	R/W select
moe	0	1	Output enable
mcen	0	1	Chip enable
mce2n	0	1	Chip enable
mce2	0	1	Chip enable
mzz	0	1	Snooze enable
mlbon	0	1	Burst/linear select
mcken	0	1	Clock enable
mldn	0	1	Address advance/load

ZBT Memory Interface

SDRAM Memory Interface

Signal Name	I/O	Width	Description
DQ	I/O	G.W.	Data input/output
/CAS	0	1	Column Address Strobe
/RAS	0	1	Row Address Strobe
We	0	1	Write Enable
/S0, /S1	0	2	Chip Select
CKE0, CKE1	0	2	Clock Enable, controls internal clock signal
Address	0	G.W.	Address
BA	0	G.W.	Selects banks to be activated during /RAS activity
			Selects banks to be read/written during /CAS activity
DQM	0	G.W.	Data Mask

SDRAM Memory Interface

Display Interface

LVTTL

Signal Name	I/O	Width	Description
Enable	0	1	Indicates active video pixels
Hsync	0	1	Horizontal synchronous signal
DispClk	0	1	Display clock signal for sampling each data signal
Vsync	0	1	Vertical synchronous signal
Blue	0	G.W.	Blue data signal
Green	0	G.W.	Green data signal
Red	0	G.W.	Red data signal

LVTTL Display Interface

LVDS

Signal Name	I/O	Width	Description
TXCLKp, TXCLKn	0	1 pair	LVDS Display clock
TX3p, TX3n	0	1 pair	LVDS Data
TX2p, TX2n	0	1 pair	LVDS Data
TX1p, TX1n	0	1 pair	LVDS Data
TX0p, TX0n	0	1 pair	LVDS Data

LVDS Display Interface

Block Diagram

Display Controller

Display Controller Block Diagram

BADGE Description

Interfaces:

Host Interface:

Communication with a host processor.

Memory Controller Interface:

For reading and writing to the external video memory.

Display Controller Interface:

The display controller reads image data from the video memory and outputs it to the display together with display clock, sync and enable signals.

Video Stream Interface:

Today, the digital interface ITU-R BT.656 is supported. An external A/D circuit is needed.

GPUs and VPUs

MDAGPU:

The Memory Direct Access GPU lets the host write and read directly in the video memory. This is required for storing image bitmaps, fonts, etc in the video memory.

SPDGPU:

The Simple Pixel Drawing GPU is used for drawing points, lines and rectangles, with specified color.

CHRGPU:

The CHRGPU is used to accelerate text drawing with various fonts, sizes and colors.

RCCGPU:

The ReCtangle Copy GPU performs Rectangle Copying including Raster OPerations (ROP). ROP is normally used in Graphical User Interfaces (GUI), for example inverting and shadowing of icons. Performance: around 110Mpixel/s (for Spartan-3/Cyclone families).

VPU:

The Video Processing Unit is used for showing composite, S-video or other analog formats on a display.

Example of Device Utilization & Performance

Implementation example: BADGE 2D	Altera FPGA Cyclone IV EP4CE10	Xilinx FPGA Artix-7 XC7A15T
Video memory	SDRAM, 1M x 32 bits	
Display	1680 x 1050 pixels, 16 bits per pixel, 60 frames per second	1024 x 768 pixels, 18 bits per pixel, 50 frames per second
System clock frequency	100 MHz	100 MHz
Display clock frequency	50 MHz	10 MHz
Number of global clock-nets	2	2
Other info	The data bus between the FPGA and the video memory is 32 bits wide, which enables 2 simultaneously pixel operations/accesse s. Burst access is used to guarantee performance. Multipixeloperations (concurrent access of multiple pixels in the memory) double the performance.	The data bus between the FPGA and the video memory is 72 bits wide, which enables 4 simultaneously pixel operations/accesses. The performance in terms of pixel updating is 40 Mega pixel per second for each GPU - 80 Mega pixel per second for the system. Multipixel-operations (concurrent access of multiple pixels in the memory) quadruple the performance.

Example of different implementations

BADGE Configurations

BADGE Lite	 Acts as a display-controlling device Pixel-by-pixel access HW Cursor
BADGE 2D	2D graphics acceleration
BADGE Video	Analog Video orDigital Video
BADGE Full	Analog or Digital Video and2D acceleration

Table of different configurations of BADGE

BADGE will fit into some of the smallest versions of the Altera Cyclone and Xilinx Spartan families, depending on which choosen BADGE configuration.

Deliverables

Documentation	Data Sheet
	User Guide
Design File Formats	VHDL or Netlist
	Constraints File
Verification	Test Bench
	Command File
Reference Design available (not included)	Demo HW Platform, including test SW
Simulation Tool	ModelSim script
Support	Provided by BitSim AB

Table of Deliverables

Contact InformationBitSim AB

Brahev 2 SE-169 69 Solna Sweden Tel +46 8 54 55 56 00

www.bitsim.com